5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

代数的整数論 016

594 :Kummer ◆g2BU0D6YN2 :2010/01/27(水) 17:32:08
命題
K を複素数体とする。
K における区分的に C^1 級の閉曲線(>>495) C と
|C| (>>550) に属さない K の点 c に対して、
(1/2πi)∫[C] 1/(z - c) dz は整数である。

証明
ψ: [a, b] → U を C の代表とする。
∫[C] 1/(z - c) dz = ∫[a, b] ψ’(t)/(ψ(t) - c) dt である。

[a, b] の任意の点 t に対して
g(t) = ∫[a, t] ψ’(t)/(ψ(t) - c) dt とおく。

[a, b] の有限個の点を除いて g’(t) = ψ’(t)/(ψ(t) - c) である。
よって、>>593より定数 A があり、[a, b] の各点 t で ψ(t) - c = A exp(g(t))
c は |C| に属さないから ψ(t) ≠ c である。
よって、A ≠ c である。
C は閉曲線だから ψ(a) = ψ(b) である。
よって、A exp(g(b)) = A exp(g(a))
g(a) = 0 だから exp(g(a)) = 1 である。
よって、exp(g(b)) = 1 である。
よって、g(b) = ∫[C] 1/(z - c) dz は 2πi の整数倍である。
証明終

501 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)