5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

分からない問題はここに書いてね330

63 :132人目の素数さん:2010/03/24(水) 18:08:44
多いですがお願い致します。

@Xの部分集合列A_1,A_2,…
 B={x∈X;x∈A_nなるnが無限個存在する}
 のとき、BをA_n,∪,∩,c(補集合)を用いて表してください。
 ∀や∃は用いないでください。

Af(x)=sin(1/x^(1/2)) *(1-x)^n /(x)^(1/2)
 のとき、lim[n→∞] ∫[0→1]f(x)dx を求めてください。

|f(x)|≦(1-x)^n /(x)^(1/2) としてこの積分値が有限ならlimと∫が交換できる(答えは0)はずなのですが、積分の仕方がわからないです。
方針が間違っているのでしょうか。

Bf(x)=1/(nx+1/2^n)
 のとき、lim[n→∞] ∫[0→1]f(x)dx を求めてください。

ルベーグ積分の定義どおりに∫fdx を計算したら、
lim[m→∞] (納0≦k≦m*2^m-1](k/2^m)*(f^(-1)(k/2^m)−f^(-1)((k+1)/2^m)) + m*f^(-1)(m))
=lim[m→∞] (納0≦k≦m*2^m-1](1/n(k+1)) + (1-m/2^n)/n)
=lim[m→∞] ((α+log(m*2^m))/n + (1-m/2^n)/n)  (0<α<1)
=lim[m→∞] ((1+α)/n + (1/n)logm + (log2-1/2^n)m)
=∞
となってしまった(答えは∞)のですが、どこが間違っているのでしょうか。
もっと楽な方法があるのでしょうか。

227 KB
★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)